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In this paper we compare the utilityof differentcommitment strategiesin planning. Under a 'least

commitment strategy',plans are represented as partialorders and operators are ordered only when

interactionsare detected.We investigateclaimsof the inherentadvantages ofplanning with partialorders,

as compared to planning with totalorders. By focusing our analysison the issue of operator ordering

commitment, we are able to carry out a rigorouscomparative analysisof two planners. We show that

partial-orderplanning can be more efficientthan total-orderplanning, but we also show that thisisnot

necessarilyso. This paper isan expanded versionof a conferencepaper appearing inAAAI-91. We include

proofs that were omitted from the conferencepaper.
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Abstract

In this paper we compare the utility of different commitment strategies in planning.

Under a "least commitment strategy", plans are represented as partial orders and

operators are ordered only when interactions are detected. We investigate claims of

the inherent advantages of planning with partial orders, as compared to planning with

total orders. By focusing our analysis on the issue of operator ordering commitment,

we are able to carry out a rigorous comparative analysis of two planners. We show

that partial-order planning can be more efficient than total-order planning, but we also

show that this is not necessarily so. This paper is an expanded version of a conference

paper appearing in AAAI-91. We include proofs that were omitted from the conference

paper.



1 Introduction

Since the introduction of non-linear planning over a decade ago (Sacerdoti, 1977), the su-

periority of non-line_ planning over linear planning has been tacitly acknowledged by the

planning community. However, there has been little analysis supporting this intuition. In

this paper, we focus on one aspect of non-linear planning: the use of partially ordered plans

rather than totally ordered plans. The idea has been that a partially ordered plan allows a

planner to avoid premature commitment to an incorrect operator ordering, and thus improve

efficiency. We analyze the costs and benefits of using partially ordered and totally ordered

plans to implement different commitment strategies for operator ordering.

Why should we be concerned about an issue that is over a decade old? Since modern

planners are not very different from early planners in their basic approach, the issue is

still with us. In this paper, we address the issue by first considering a simple total-order

planner, and from this planner we construct a partial-order planner which can have an

exponentially smaller search space. Next, we show that a second, independent source of

power is available to a partial-order planner, namely, the ability to make more informed

planning decisions. The relationship between our two planners demonstrates the potential

utility of a least commitment strategy. We also show that a partial-order planner based on

Chapman's (1987) Tweak can be less efficient than our total-order planner, and we examine

why this can happen.

2 Background

Planning can be characterized as search through a space of possible plans. A total-order

planner searches through a space of totally ordered plans; a partial-order planner is defined

similarly. We introduce these definitions because the terms "linear" and "non-linear" axe

overloaded. For example, some authors have used the term "non-linearity" when focusing on

the issue of goal ordering. That is, some "linear" planners, when solving a conjunctive goal,

require that all subgoals of one conjunct be achieved before subgoals of the others; hence,

planners that can arbitrarily interleave subgoals are often called "non-linear'. This version

of the lineax/non-linear distinction is different than the partial-order/total-order distinction

investigated here. The former distinction impacts planner completeness, whereas the total-

order/partial-order distinction is orthogonal to this issue (Drummond & Currie, 1989).

We claim that the only significant difference between partial-order and total-order plan-

ners is planning efficiency. It might be argued that partial-order planning is preferable

because a partially ordered plan can be more flexibly executed. However, this flexibility

can also be achieved with a total-order planner and a post-processing step that removes

unnecessary orderings from the totally ordered solution plan to yield a partial order. The

polynomial time complexity of this post-processing is negligible compared to the search time

for plan generation (Veloso et al., 1990). Hence, we believe that execution flexibility is, at

best, a weak justification for the supposed superiority of partial-order planning.

In order to analyze the relative efficiency of partial-order and total-order planning, we



begin by considering a total-order planner and a partial-order planner that can be directly

compared. By elucidating the key differences between these planning algorithms, we reveal

some important principles that are of general relevance.

3 Terminology

A plan consists of an ordered set of steps, where each step is a unique operator instance.

Plans can be totally ordered, in which case every step is ordered with respect to every other

step; or partia2ly ordered, in which case steps can be unordered with respect to each other.

We assume that a library of operators is available, where each operator has preconditions,

deleted conditions, and added conditions; each deleted condition must be a precondition.

Each condition must be a non-negated propositional literal. Later in this paper we show

how our results can be extended to more expressive languages.

A linearization of a partially ordered plan is a total order over the plan's steps consistent

with the existing partial order. In a totally ordered plan, a precondition of a plan step is

true if it is added by an earlier step and not deleted by any intervening step. In a partially

ordered plan, a step's precondition is possibly true if there exists a llnearization in which it

is true, and a step's precondition is necessarily true if it is true in all linearizations. A step's

precondition is necessarily false if it is not possibly true.

A planning problem is defined by a start state and goal state pair, where a state is a set

of propositions. For convenience, we represent a problem as a two-step initial plan, where

the first step adds the start state propositions and the preconditions of the final step are

the goal state propositions. The planning process starts with this initial plan and searches

through a space of possible plans. A successful search terminates with a solution plan,

i.e., a plan in which all steps' preconditions are necessarily true. The search space can be

characterized as a tree, where each node corresponds to a plan and each arc corresponds to

a plan transformation. Each transformation incrementally extends (i.e., refines) a plan by

adding additional steps or orderings. Thus, each leaf in the search tree corresponds either

to a solution plan or a dead-end, and each intermediate node corresponds to an unfinished

plan which can be further extended.

4 A Tale of Two Planners

In this section we define two simple planning algorithms. The first algorithm, shown in Fig-

ure 1, is TO, a total-order planner motivated by Warren (1974), 'rate (1974), and Waldinger

(1975). TO accepts an unfinished plan, P, and a goal set, G, containing the preconditions of

steps in P which are currently false. If the algorithm terminates successfully then it returns

a totally ordered solution plan. Note, there are two backtracking points in this procedure:

operator selection and ordering selection. The procedure does not need to backtrack over

goal choices. (Thus, the planner is presumably more efficient than one that backtracks

over goal choices as well as operator and ordering choices). For our purposes, the function



TO(P,G)

I. Termination: If G is empty, report success and stop.

2. Goal selection: Let c :select-goal(G), and let Oneea be the plan step for which c is a precondition.

3. Operator selection: Let O,dd be an operator in the library that adds c. If there is no such Oo_, then

terminate and report failure. Backtrack point: all such operators m,Ast be considered/or completeness.

4. Ordering selection: Let Odel be the last deleter ofc. Insert O,_ somewhere between Odet and O, eed,
call the resulting plan P_. Backtrack point: all such positio,_s must be considered for completeness.

5. Update goal set: Let G _ be the set of preconditions in P' that are not true.

6. Recursive invocation: TO(P', Gt).

Figure 1: The TO Planning Algorithm

goal-select can be any function that selects a member of G.

As used in step 4, the last deleter of a precondition c for a step O,_ed is a step O&l before

O,_ed which deletes c, such that there is no other deleter of c between Od_z and O,_ed. The

first plan step is considered the last deleter if it does not add c and no other step before

O,_d deletes c.

Our purpose here is to characterize the search space of the TO planning algorithm, and the

pseudo-code we give does this by defining a depth-first procedure for enumerating possible

plans. All the algorithms described in this paper can also be implemented as breadth-first

procedures in the obvious way, and in that case, all are provably complete as shown in

Appendix B.

The second planner is UA, a partial-order planner, shown in Figure 2. UA is similar to

TO in that it uses the same procedures for goal selection sad operator selection, sad unlike

TO in that its solution plans are partially ordered. Step 4 of UA orders plan steps based on

"interactions". Two steps in a plan are said to interact if they are unordered with respect

to each other and there exists a precondition c of one step that is added or deleted by the

other. 1 The significant difference between UA and TO lies in step 4: TO orders the new

step with respect to all others, whereas UA adds on/y those orderings that are required to

eliminate inte_ctions. It is in this sense that UA is less committed than TO.

Since UA ocden ,dl steps which interact, the plans that axe generated have a special

property: each precondition in a plan is either necessarily true or necessarily false. We

call such plans unambiguous. This property yields a tight correspondence between the two

planners' search spaces. Suppose UA is given the unambiguous plan P,,_ and that TO is given

P,o, one of its linearizations. P_ and P,o have the same set of goals since, by definition, each

goal in P_ is necessarily false and if a precondition is necessarily false, it is false in every
linearization.

Consider the relationship between the way that UA extends P,,_ and TO extends Pro.

1Note, a step that deletes c interacts with one that adds or deletes c according to this definition because
a step's deleted conditions are required to be a subset of its preconditions.

4



UA(P,

1.

2.

3.

G)

Termination: If G is empty, report success and stop.

Goal selection: Let c =select-goal(G), and let O, eed be the plan step for which c is a precondition.

Operator selection: Let O_dj be an operator in the library that adds c. If there is no such O,jd, then
terminate and report failure. Backtrack point: all such operators must be considered for completeness.

4. Ordering selection: Let O&a be the last deleter of c. Order Oojd after Ojea and before O,e_j.
Repeat until there are no interactions:

o Select a step Oi,t that interacts with O,jd.
o Order O_nt either before or after Oedd.
Backtrack point: both orderings must be considered for completeness.

Let P' be the resulting plan.

5. Update goal set: Let G' be the set of preconditions in pi that are necessarily false.

6. Recursive invocation: UA(P', G').

Figure 2: The UA Planning Algorithm

Since the two plans have the same set of goals, and since both planners use the same goal

selection method, both algorithms pick the same goal; therefore, O,_ed is the same for both.

Similarly, both algorithms consider the same library operators to achieve this goal. Since

Pro is a linearization of P,_, and O,_ed is the same in both plans, both algorithms find the

same last deleter as well. 2 When TO adds a step to a plan, it orders the new step with

respect to all existing steps. When UA adds a step to a plan, it orders the new step only/

with respect to interacting steps. UA considers all possible combinations of orderings which

eliminate interactions, so for any plan produced by TO, UA produces a corresponding plan

that is less-ordered or equivalent. The following sections exploit this tight correspondence

between the search spaces of UA and TO. In the next section we compare the entire search

spaces of UA and TO, and later we compare the number of plans actually generated under

different search strategies.

5 Search Space Comparison

Recall that tim search space for both TO and UA can be characterized as a tree of plans. We

denote the search space of TO by treeto, and similarly the search space of UA by tree_. Thus,

the number of plans in a search tree is equal to the number of times the planning procedure

(UA or TO) would be invoked in a complete exploration of the search space. Formally, every

plan in tree_ and treeto is unique, since each step in a plan is given a unique label. Thus,

although two plans in the same tree might both be instantiations of a particular operator

sequence, such as O1 -< O2 -< 03, the plans are distinct because their steps have different
labels.

2Thereisa uniquelastdeleterinan unambiguousplansincetwo stepswhich deletethesame condition

interact,and thus,must be ordered.

5



We show that for any given problem, tree*o is at least as large as tree.,, that is, the

number of plans in tree_o is greater than or equal to the number of plans in tree.,. This is

done by proving the existence of a function/_ which maps plans in treeu_ to sets of plans in

tree*o that satisfies the following two conditions.

1. Totality Property: For every plan U in tree.,, there exists a non-empty set {T1, • • •, T,_}

of plans in tree*o such that _(u) = {T1,..., T,_}.

2. Disjointness Property: £ maps distinct plans in treeffi, to disjoint sets of plans in

tree*o;that is,ifUI, U2 E tree._ and UI _ U2, then £,(UI)N £,(U2)= {}.

Let's examine why the existence of an/: with these two properties is sufficient to prove

that the size of UA's search tree is no greater than that of TO. Figure 3 provides a guide for

the following discussion. Intuitively, we can use/: to count plans in the two search trees.

For each plan counted in tree_, we use £ to count a non-empty set of plans in treeto. The

first property of/: means that every time we count a plan in tree.,, we count at least one

plan in tree*o; this implies that I tree., I <- _t,.... I £(U) I. Of course, we must further

show that each plan counted in tree*o is counted only once; this is guaranteed by the second

property of £, which implies that _cret,_.. I £,(U) [ <_ [ tree*o [. Thus, the conjunction of

the two properties implies that I tree., I -< [ tree*o I.

We can define a function £ that has these two properties as follows. Let U be a plan in

tree.,, let T be a plan in tree,o, and let parent be a function from a plan to its parent plan

in the tree. Then T E £(U) if and only if T is a linearization of U and either both U and

T are root nodes of their respective search trees, or parent(T) E £(parent(U)). Intuitively,

/: maps a plan U in tree., to all linearizations which share common derivation ancestry. 3

This is illustrated in Figure 3, where for each plan in tree.,., a dashed line is drawn to the

corresponding set of plans in tree,o.

We can show that £ satisfies both of the properties by induction on the depth of the

search trees. Detailed proofs are in the appendix. To prove the first property, we show that

for every plan contained in tree.,, all linearizations of that plan are contained in treeto. This

can be proved by examining the tight correspondence between the search trees of UA and

TO. To prove the second property, we show that £ maps plans U1 and U2 at the same depth

in tree., to disjoint sets of plans in tree*o: if U1 and U2 do not have the same parent, then

the property holds; if they have the same parent, then the plans U1 and U2 must be different

(by the definition of UA), in which case their corresponding sets of linearizations are disjoint.

How much smaller is tree., than tree,o? The mapping described above provides an

answer. For each plan U in tree,,, there are [ £,(U) I distinct plans in TO, where [ £(U) I

is the number of linearizations of U. The exact number depends on how unordered U is.

3The reader may question why £ maps U to all its linearizations which share common derivation ancestry,
as opposed to simply mapping/7 to all its linearizations. The reason is that the derivational history allows
£ to distinguish plans that have the same operators and orderings. For example, suppose two instantiations
of the same operator sequence O1 -_ 02 -_ 03 exist within a treeto but they correspond to different plans in
tree... £ can use their different derivations to determine the appropriate correspondence.

6



UA search tree /Z TO search tree

o ...................... {o}

.................. {o o}

o___Q__ A A........ ?--{o o}
0 .................... {0 0

Figure 3: How L: maps from tree_ to treeto

A totally unordered plan has a factorial number of linearizations and a totally ordered plan

has only a single linearization. Thus, the only time that the size of tree_ equals the size

of treeto is when every plan in treeua is totally ordered; otherwise, treeua is strictly smaller

than treeto, and possibly exponentially smaller.

6 Time Cost Comparison

While the size of UA's search tree is possibly exponentially smaller than that of TO, it does

not follow that ul is necessarily more efficient. Efficiency is determined by two factors: the

time cost per plan in the search tree (discussed in this section) and the size of the subtree

actually explored to find a solution (discussed below).

In this section we show that while uA can indeed take more time per plan, the extra time

is relatively small and grows only polynomially with the size of the plan. In our analysis,

the size of the plan is simply the number of steps in the plan. 4 In comparing the relative

efficiency of UA and TO, we first consider the number of times that each algorithm step is

executed per plan in the search tree and then consider the time complexity of each step.

As noted in the preceding sections, each node in the search tree corresponds to a plan,

and each each revocation of the planning procedure for both uA and TO corresponds to an

attempt to extend that plan. Thus, for both UA and TO, steps 1 and 2 are each executed

once per plan, and the number of executions of step 3 per plan is bounded by a constant

(the number of operators in the library). Analyzing the number of times step 4 is executed

might seem more complicated, since it may be executed many times at an internal plan (i.e.,

internal node) in the search tree and is not executed at all at a leaf. However, notice that a

new plan is generated each time step 4 is executed. Consequently, step 4 is executed once per

plan generated (i.e., once for each node other than the root node). Step 5 is also executed

4We disregard operator size and the number of conditions in any given "state", since we assume these
are bounded by a constant for a given domain. An analysis that includes these factors does not affect our
conclusion.



onceper plan generatedsince it always follows step 4. Thus, both algorithms execute each

step O(1) times per plan as summarized in Table 1.

In examining the costs for each step, we first note that for both algorithms, steps 1, 2,

and 3 can be accomplished in O(1) time. The cost of step 4, the ordering step, is different for

TO and UA. In TO, step 4 is accomplished by inserting the new operator, O_dd, somewhere

between Od, t and O,_,d. If the possible insertion points are considered starting at O,_,d and

working towards O&t, then step 4 takes constant time, since each insertion constitutes one

execution of the step. On the other hand, step 4 in UA involves carrying out interaction

detection and elimination. As shown in Appendix A this step can be accomplished in O(e)

time, where e is the number of edges in the graph required to represent the partially ordered

plan. If n is the number of steps in the plan, then in the worst case, there may be O(n 2)

edges in the graph, and in the best case, O(n) edges. To carry out step 5 may require

examining the entire plan, and thus, for UA, takes O(e) time and for TO, O(n) time. To

summarize, UA pays the penalty of having a more complex ordering procedure (step 4), as

well as the penalty for having a more expressive plan language (a partial order as compared

to total order) which is reflected in the extra cost of step 5. Overall, UA requires O(e) time

per plan, whereas TO only requires O(n) time per plan.

] Step [ Executions Per Plan

1 1

2 1

3 0(i)

4 1

..5 1

TO Cost UA Cost

O(1) O(1)

0(I) 0(1)

o(1) o(1)
o(1) O(e)
o(,,) O(e)

Table 1: Cost Per Plan Comparisons

7 Overall Efficiency Comparison

The previous Nctions compared TO and UA in terms of relative search space size and relative

time cost per plan. The extra processing time required by UA for each plan would appear to

be justified since its search space may contain exponentially fewer plans. To complete our

analysis, we must consider the number of plans actually explored by each algorithm under

a given search strategy. (Recall that a plan is explored by an algorithm if the algorithm is

called with that plan as its argument.)

Consider a breadth-first search technique that explores the entire search tree up to the

depth of the smallest solution plan. By the search tree correspondence established earlier,

both algorithms find the first solution at the same depth. Thus, TO explores all linearizations

of the plans explored by UA. We can formalize the overall efficiency comparison as follows.

For a plan U in tree_, we denote the number of steps in U by n,_, and the number of edges by

8



e,,. Then for each plan U that UA generates, UA incurs time cost O(e,_); whereas, TO incurs

time cost O(nu)" [£(U)[, where [ LI(U) I is the number of linearizations of U. Therefore,

the ratio of the total time costs of TO and UA is as follows, where bf(tree,,_) denotes the

subtree considered by UA under breadth-first search.

cost(TOb/) _ ZuebS(t,,**,..)O(n,_). I £(U') I

cost(UAb/)

The cost comparison is not so clear-cut for depth-first search, since TO does not nec-

essarily explore all hnearizations of the plans explored by UA. A plan in a search tree is

completable if it is on a path to a solution, otherwise, it is uncompletable. If a plan in tree,s

is uncompletable, all of the corresponding plans in treeto axe also uncompletable. If a UA

plan is completable, then some subset of the corresponding TO plans are completable. If,

under a depth-first strategy, UA and TO generate corresponding plans in the same order,

then (i) for every uncompletable plan U that tlA explores, TO explores all plans in/_(U) and

(ii) for every UA plan U that succeeds, TO generates at least one plan in /_(U). However,

in actuality, UA and TO need not generate corresponding plans in the same order. In this

case, while the search spaces correspond, there is no guarantee that the planners will explore

corresponding subtrees.

In fact, the expected performance of the two planners depends on exactly how solutions

are distributed within their search spaces. To see this, assume for argument's sake that

the expected number linearizations for a UA leaf plan is independent of whether the plan

fails or succeeds. Then we would expect the ratio of solution nodes to failed leaf nodes

to be the same in tree,s and tree_. Then, ifwe also assume that the solution nodes are

randomly distributedwithin each search space, it iseasilyseen that both planners can be

expected to search the same number of nodes! This isillustratedin Figure 4. In practice,

however, whereas the firstassumption seems reasonable, the second of these assumptions

is unrealistic.Typically, plans that failtend to be grouped together in the search space.

This occurs because a "wrong decision" near the top of the search tree can lead to an entire

subtree of failed plans, as shown in Figure 5. Intuitively, if plans in treeto that map to the

same plan in tree_ tend to be grouped together, then IJA will have an advantage over TO,

due to the relatively smaller size of its search space.

This intuition is supported by empirical experimentation with depth-limited versions of

UA and TO. In a blocksworld domain where all steps interact, UA tends to Explore the same

number of plans as TO under depth-first search. On another version of the blocksworld,

where the probability of two randomly selected steps interacting is approximately 0.5, UA

tends to explore many fewer plans. For example, on a representative problem, with a solution

depth (and depth-bound) of eight, TO explored 8.0 times as many plans as UA. This ratio

tends to increase with solution depth; for a problem with solution depth of nine, TO explored

15.4 times as many plans. Although UA required more time per plan, in terms of total search

time UA ran 4.6 times faster than TO on the first problem and 9.0 times faster than TO on

the second problem. The results under breadth-first search were also as expected: when all

steps interact, UA and TO search exactly the same number of plans, and when relatively few



UA Search Tree TO Search Tree

0 " solution plan

Figure 4: UA and TO search trees with evenly distributed solutions. The ratio of solutions

to leaf nodes is .25

UA Search Tree TO Search Tree

0 " solution plan

Figure 5: UA and TO search trees with solutions clumped together. The ratio of solutions

to leaf nodes is 1:4.
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Figure 6: Comparison of UA and TO on an example.

steps interact, UA explores many fewer plans than TO. For example, in our low-interaction

version of the blocksworld, on a problem where the first solution is found at depth seven, TO

explored 4.8 times as many plans as UA, and UA ran 2.8 times faster. We caution that this

is a small-scale study, intended only to illustrate our theoretical results.

The performance of TO can be improved with the addition of dependency-directed back-

tracking. We note that TO can be augmented with dependency-directed backtracking so that

it behaves similarly to UA in certain respects. Specifically, when TO backtracks to a plan, a

dependency analysis may indicate whether or not the failure below was independent of the

ordering decision that was made in extending that plan. Of course, this dependency analysis

increases the cost per plan.

8 Heuristic Advantages

It is often claimed that partial-order planners are more efficient due to their ability to make

more informed ordering decisions. So far, we have shown that a partial-order planner can

be more efficient simply because its search tree is smaller, independent of its ability to make

more informed decisions. We now show that a partial-order planner does in fact have a

"heuristic advantage" as well.

In the UA planning algorithm, step 4 arbitrarily orders interacting plan steps. Similarly,

step 4 of TO arbitrarily chooses an insertion point for the new step. It is easy to see, however,

that some orderings should be tried before others in a heuristic search. This is illustrated by

Figure 6, which compares UA and TO on a particular problem. The key in the figure describes
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the relevant conditions of the library operators, where preconditions are indicated to the left

of an operator and added conditions are indicated to the right (there are no deletes). For

brevity, the start step and final step of the plans are not shown. Consider the plan in tree_

with unordered steps O1 and 02. When UA introduces Os to achieve precondition p of O1,

step 4 of UA will order Os with respect to 02, since these steps interact. However, it makes

more sense to order 02 before 03, since 02 achieves precondition q of 03. This illustrates

a simple planning heuristic: "prefer the orderings that yield the fewest false preconditions".

This strategy is not guaranteed to produce the optimal search or the optimal plan, but tends

to be effective and is commonly used.

Notice, however, that TO cannot exploit this heuristic as effectively as UA because it

must prematurely commit to an ordering on O1 and 02. Due to this inability to postpone

an ordering decision, TO must choose arbitrarily between the plans O1 -< O2 and O2 -< Ox,

before the impact of this decision can be evaluated.

In general, UA is more informed than TO by any heuristic h that satisfies the following

property: for any UA plan U and corresponding TO plan T,/_(U) _ h(T); that is, a partially

ordered plan must be rated at least as high as any of its linearizations. (Note that for

unambiguous plans the heuristic function in our example satisfies this property.) When we

say that UA is more in/ormed than TO, we mean that under h, some child of U is rated at

least as high as every child of T. This is true since every child of T is a linearization of some

child of U, and therefore no child of T can be rated higher than a child of U. Furthermore,

there may be a child of U such that none of its linearizations is a child of T, and therefore

this child of U can be rated higher than every child of T. Assuming that h is a good heuristic,
this means that UA can make a better choice than TO.

9 A Less Committed Planner

We have shown that UA, a partial-order planner, has certain computational advantages over

a total-order planner, TO, due to its ability to delay commitments. However, there are

planners that are even less committed than UA. In fact, there is a continuum of commitment

strategies that we might consider. At the extreme liberal end of the spectrum is the strategy

of maintaining a _otall_ unordered set of steps during search, until there exists a linearization

that is a solution plan.

Compared to many well-known planners, UA is conservative since it requires each plan to

be unambiguous. This is not required by NOAH ($acerdoti, 1977), NonLin ('late, 1977), and

Tweak (Chapman, 1987), for example. How do these less-committed planners compare to

UA and TO? One might expect a less-committed planner to have the same advantages over

UA that UA has over TO. However, this is not necessarily true. For example, we show in this

section that Tweak's search tree is larger than TO's in some circumstances, s See Figure 7 for

a propositional planner, MT, based on Chapman's (1987) Modal Truth Criterion, the formal

5We use Tweak for this comparison because, like UA and TO, it is a formal construct rather than a
realistic planner, and therefore more easily analyzed.
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MT(e, G)

I. Termination" IfG isempty, reportsuccessand stop.

2. Goal selection' Let c be a goal in G, and letO, eedbe the plan step forwhich c isa precondition.

3. Operator selection: Let Oodd be either a plan step possibly before Oaeed that adds c or an operator

in the library that adds c. If there is no such Oa_d, then terminate and report failure. Backtrack

point: all such operators must be considered for completene88.

4. Ordering selection: Order Oadd before O, eed. Repeat until there are no steps possibly between
Oadd and One_d which delete c:

Let O_a be such a step; choose one of the following

ways to make c true for O, eea
o Order Odes before Oedj.

o Order Odei after Oneed.

0 Choose a step Otaiy_t that adds c that is possibly
between Oda and O.eea; order it after Oaa and

before Oneed.

Backtract= point: all alternatives must be considered for completeness.

Let P' be the resulting plan.

5. Update goal set: Let G' be the set of preconditions in P' that axe not necessarily true.

6. Recursive invocation: MT(P', G').

Figure 7: A Propositional Planner based on the MTC

statement that characterizes Tweak's search space.

The proof that UA's search tree is no larger than TO's search tree rested on the two

properties of £ elaborated in section 5. By investigating the relationship between MT and TO,

we found that the second of these properties does not hold for MT, and its failure illustrates

how MT can explore more plans than TO (and consequently UA) on certain problems. The

second property of section 5 guarantees that UA does not generate "overlapping" plans. The

example in Figure 8 shows that MT fails to satisfy this property because it can generate

plans that share common linearizations, leading to considerable redundancy in the search.

The figure shows three steps, O1, 02, and On, where each Oi has precondition p_, and

added conditions g_,/_, P2, and/)3. The final step has preconditions gl, 92, and 93, but

the start and final steps are not shown in the figure. In the plan at the top of the figure,

constructed by MT, goals 91, g2, and 93 have been achieved, but p_, p_, and p3 remain to

be achieved. Subsequently, in solving the precondition pl, MT generates plans which share

the linearization 03 -_ O2 -_ 01 (among others). In comparison, both TO and uA only

generate the plan Os -_ O2 -_ O1 once. In fact, it is simple to show that, under breadth-first

search, MT explores many more plans than TO on this example (and also more than uA, by

transitivity) due to the redundancy in its search space.

This example shows that although one planner may be less committed than another, it

is not necessarily more efficient. In general, a partially ordered plan can represent a large

set of linearizations, but of course, there can be many more partial orders over a set of steps
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1
 3-o2-o 03 -'02 -"_01_
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Pl Pl
- - _,_ _- _- - ¢2 _- p_- - -o_

P3 P3 P3

Figure 8: "Overlapping" plans.

than there are linearizations. A general lesson from this is that a search space should be

defined so as to minimize redundancy whenever possible. In particular, considering partially

ordered plans with linearization overlap should be avoided. This conclusion was recently and

independently discovered by McAllester and Rosenblitt (1991) as well.

10 More Expressive Languages

Up to this point, we have only considered a very restricted planning language in which the

operators must unconditionally add and delete propositions. However, many problems de-

mand operatoa with variables, conditional effects, or conditional preconditions. Fortunately,

our basic resalts extend to more expressive operator languages. In many important cases,

UA and TO can be extended so that the search space correspondence still holds. In such

cases, the relative advantages of UA over TO will be preserved as long as the time cost of

detecting possible interactions remains relatively small.

Let us first consider the simple extension to our language where library operators have

variables. We have implemented simple versions of TO and UA for this language. The

description of TO is shown in Figure 9 (and UA follows in the obvious way). The new

algorithm is identical to the original, except for the addition of a step which instantiates the

operator. Thus, this algorithm requires that all possible bindings be computed by this step.

This is accomplished, as in other planners (Minton et al., 1989) by requiring operators to
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have a set of static or type preconditions. For example, below we show a definition of the

blocksworld STACK operator in which the static preconditions Is-Block(z) and Is-Block(y)

allow the planner to find the complete set of possible bindings for z and Y.

STACK(z y)

PRECONDITIONS:

Is-Block(z)

Is-Block(v)

Not-equal(x V)

Holding(z)

Clear(y)

EFFECTS:

ADD On(z V)

DELETE Holding(z)

DELETE Clear(y)

As it turns out, the analysis that we have done so far holds without modification for

this language. In particular, the search space correspondence holds because the TO and UA

algorithms are essentially unchanged. The time cost analysis holds because the complexity

of identifying goals and detecting interactions is unchanged; since operators are immediately

instantiated, the plans that are generated do not contain variables.

How about other languages? The relationship between uA and TO's search spaces depends

on the fact that uA generates unambiguous plans. In general, however, the work required

to demonstrate step interaction tends to increase with the expressiveness of the operator

language used (Dean & Boddy, 1988; Hertzberg & Horz, 1989). Thus we might expect that

the expense of the "disambiguation" process used by uA will increase with expressiveness

of the language. Presumably, the relative savings in search space that uA enjoys will then

be eventually outweighed by the extra time required to extend a plan. In other words, the

potential advantages of uA over TO hold only if we can find a relatively inexpensive way for

UA to maintain unambiguous plans. Fortunately, we believe the cost of detecting interactions

can often be kept low by relying on conservative definitions of step interaction.

As an example, let us consider a simple propositional language with conditional effects,

such as "If p, then Add q'. An operator can thus add or delete propositions depending on

the state in which it is executed. We will refer to conditions such as "p" in our example

as dependency condition,, s Chapman (1987) showed that with this type of language, it is

NP-hard to decide whether a precondition is true or false in a partially-ordered plan. We can

employ (the original) TO to deal with this language without any modification. Interestingly,

if we slightly modify the definition of step interaction, we can also employ (the original) UA

without modification. In particular, we ca,, redefine step interaction for uA as follows:

6Note that, for simplicity, we still require that any condition that is deleted also be a precondition or a
dependency condition.
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Two steps in a plan are said to in_erac_ if they are unordered with respect to

each other and there exists a precondition or dependency condition of one step

that can be added or deleted by the other.

This definition allows interacting steps to be detected via an inexpensive syntax check,

and thus the cost of step interaction and disambiguation is kept low. In fact, checking

whether two operators interact requires only constant time, just as with our original language.

Furthermore, because the plans produced by uA are unambiguous, uA can determine whether

a precondition is true or false in polynomial time. In fact, it suffices to take any linear

ordering of the plan, which can be accomplished in O(e) time using a topological sort, and

then use the same procedure as TO for determining the truth or falsity of a precondition/

Consequently, with this language, TO and UA have exactly the same time complexity as with

our original language, and our original analysis holds without modification.

As this example has illustrated, the potential advantages of uA over TO can extend to

more expressive languages provided that the cost of maintaining unambiguous partially-

ordered plans is not much more than that of maintaining totally-ordered plans. We believe

that this can generally be accomplished through the use of conservative strategies for inter-

action detection and resolution. By conservative, we mean that a strategy is guaranteed to

insert orderings where required, but may also occasionally introduce orderings unnecessarily.

For example, according to the above definition, two steps interact if they both conditionally

add p. However, in any given plan, the conditions may be such that neither step actually

adds p. Thus, the cost of interaction detection is low, since the planner does not need to

check the conditions in the plan, however, the use of unnecessary orderings can lead to a

larger search space than is required.

The larger lesson here is that the cost of plan extension is not solely dependent on the

expressiveness of the operator language, it also depends on how the planner deals with

that expressiveness. So, although plan extension is NP-hard for languages with conditional

effects, this does not necessarily effect UA, as we have shown. By relying on a conservative

disambiguation methods, we can preserve uA's advantages over TO.

11 Concluding Remarks

By focusing out analysis on the single issue of operator ordering commitment, we were able

to carry out a rigorous comparative analysis of two planners. In contrast, most previous

work has focused on the definition of a single planner, and comparative analyses have been

rare. s We have shown that the search space of one partial-order planner, UA, is never larger

than the search space of one total-order planner, TO. Indeed for certain problems, UA's

search space is exponentially smaller than TO's. Since UA pays only a small polynomial time

tOne method for determining whether a precondition is true or false is to simply simulate the plan, which
can be accomplished in O(n) time.

SSoderland and Weld (1991) have very recently, and independently, carried out a comparative analysis of
two planners, corroborating some of the results reported in Section 5.
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TO(P, G)

1. Termination: IfG isempty,reportsuccessand stop.

2. Goal selection:Let cbe a goalinG, and letOneeabe theplanstepforwhichc isa precondition.

3. Operator selection:LetO,_dbean operatorinthelibrarythataddsc.Ifthereisno suchOojd,then
terminate and report failure. Backtrack point: all such operators must be considered/or completeness.

4. Bindings selection: Let vl, v2,.., be the variables in O°_. Consider a set of bindings for vl, v2,...
and instantiate the operator. Backtrack point: all such sets of bindings must be considered for com-

pleteness.

5. Ordering selection: Let Ode: be the last deleter ofc. Insert O°aa somewhere between Oaet and O,_ed,
call the resulting plan P'. Backtrack point: all such positions must be considered for completeness.

6. Update goal set: Let G' be the set of preconditions in P' that are not true.

7. Recursive invocation: TO(P', G').

Figure 9: The TO planning algorithm, modified for operators with variables

increment per plan over TO, itis generallymore efficient.We have also demonstrated that

UA can be more informed than TO under a certainclassof heuristicevaluation functions.

Lastly,we have shown that partial-orderplanners do not necessarilyhave smaller march

spaces;in particulax,we demonstrated that a Twea_k-likeplanner can have a largersearch

space than TO on some problems.

How general are these results?While our analysishas considered only two specificplan-

ners, the tradeoffs that we have examined are of general relevance. We believe these tradeoffs

are manifested in other styles of planner, including temporal-projection planners (Drum-

mond, 1989) and STRIPS-like planners such as Prodigy (Minton et al., 1989). We conjecture

that one can define a partial-order version of Prodigy, for instance, which corresponds to the

original in the same way that UA corresponds to TO. The key difficulty in analyzing possi-

ble correspondences between such planners is establishing a mapping between the planners'

search trees.

The general lesson from this work is that partial-order planning can be more efficient than

total-order pluming, but is not necessarily more efficient. When designing a partial-order

planner, one mwt understand the effect of plan representation on the planner's search space,

the cost incmm_ per node, and sources of possible redundancy in the search space.
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A Implementation of Planning Algorithms

In this section we describe the implementation of TO and UA in more detail. Figure 10 shows

a procedure implementing the TO algorithm. The procedure is straightforward, selecting a

goal and then looping through the choices for an operator and position. Each of the steps in

the algorithm can be implemented in constant time, except for the call to the subprocedure

Update-Goal-Set.

The Update-Goal-Set procedure is shown in Figure 11. The procedure takes a step that

has been newly inserted into a plan, and it updates the set of unachieved goals. There

are three basic phases in the algorithm. First, the algorithm sweeps backward through the

plan, starting at the position of the newly introduced step and moving backward until the

initial step is reached. The algorithm compares the preconditions of the new step to the add

and delete lists for each prior step, marking those preconditions that match with an added

condition as achieved, and those that match a deleted condition as unachieved. Since each

condition can be marked in constant time and the size of each operator is assumed to be

bounded by a constant, the complexity of this phase is equal to the number of predecessor

steps, which is O(n).

Next, the algorithm sweeps forward through the plan, starting after the newly introduced

step and moving forward until the final step is reached. The algorithm compares the pre-

conditions each step along the way to a list of active propositions added and deleted by the

new step, marking the preconditions achieved or unachieved as appropriate. Initially, all of

the added and deleted propositions are active. If a proposition added (deleted) by the new

step is ever deleted (added) by a subsequent step, the added (deleted) proposition is marked

as inactive. In this way the algorithm guarantees that the effects of a step are correctly

propagated. As with the first phase, the time complexity of this phase is O(n).

Finally, the preconditions that are marked as unachieved are collected by traversing the

plan, which also takes O(n) time. Thus, the complexity of this procedure is O(n).

A procedure implementing the UA algorithm is shown in Figure 12. Similarly to TO,

the procedure selects a goal and then loops through the choices for an operator and po-

sition. Each of the steps in the algorithm can be implemented in constant time, except

for the calls to the subprocedures Update_Goal_Set.for_UA_Plan, Disambiguate, and Disam-

biguate_Backtrack.

Update_GoaLSet_for_UA.Plan is not shown, but it is quite similar to Update_Goal_Set,

which is called by TO. The only difference is that instead of sweeping backward and forward

through a total-order, the procedure sweeps backward and forward through a partial-order.

This can be accomplished in O(e) time. Alternatively, the same effect can be achieved by

taking the partial-order, converting it to a total-order using an O(e) topological sort, and

then calling the original Update_Goal_Set procedure.

The subprocedures Disambiguate and Disambiguate_Backtrack are shown in Figures

13 and 14, respectively. The first procedure determines the steps that interact with the

new step and orders them after the new step. If this ordering does not succeed, Disam-

biguate_Backtrack is called to undo the orderings one by one. When an ordering is undone,
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the alternative ordering is then tried, and Disambiguate is called again. In this way, all

combinations of orderings are eventually tried.

Together, the two procedures try all consistent sets of orderings between the new step

and the interacting steps. For each combination of orderings, the two procedures must mark

all the steps that are transitively before and after the new step. This can be accomplished in

an efficient manner, so that each step is only marked once. As each ordering is accomplished,

Disambiguate keeps track of which steps are still in parallel to the new step, by marking all

plan steps that are now before or after the new step. Each edge in the partial order only

need be examined once. Whenever a previously parallel step is ordered before (or after) the

new step, it is marked as before (or after) and then any steps before (or after) the newly

marked step are recursively marked. The recursion stops whenever a step is already marked.

Thus, an edge is traversed only if it is before (or after) a step that has just been marked.

Since a step is marked (and then unmarked) at most once per each combination of orderings,

the complexity of the disambiguation process is O(e) per child node that is generated, as

discussed in section 6.
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;;; pre(s) = the precondition predicates of step,

;;; del(s) = the delete predicates of step s

;;; unachieved(c) = the predicate e is marked as unachieved

;;; P =< S,O >

;;; S = {sis is a step in plan P}

;;; O = {< sl, s2 > [at E S, *2 E S and sx ordered before s2}

;;; G = {< _,_ > I__ pre(_) and .nachie_ed(,) }

Procedure TO (P,G)

If G is empty, return SUCCESS

Choose a c and s,_ed such that < c, s,_ed > E G

Let OPS,,t.,,o,,t be the set of operators that achieve c

while Not_Empty(OPS,,_o,_) do

S_dd _-- Make-Unique-Step(Pop( OPS,,l,,_)

poststep _-- s,_d

repeat

prestep _-- Predecessor(poststep)

Let plan P' be the result of inserting step s_dd between prestep and poststep

G' _ Update_Goal_Set(s_dd, G)

If TO(P', G') = SUCCESS, then return SUCCESS

poststep _- prestep

until c E del(prestep) or Predecessor(prestep) = NIL
end-while

Return r_I.uaE

end-of TO

Figure 10: Implementation of the TO Planning Algorithm
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procedure Update-Goal-Set(new-step,unachieved)

possible-goals _ Precondition_List (new-step)

step _ new-step

/, All Preconditions in possible-goals are unmarked at this point. */

while (step ,--- Predecessor (step)) do

For each unmarked Precondition in possible-goals which matches an Add for this

step, mark the Precondition as Achieved.

For each unmarked Precondition in possible-goals which matches a Delete for

this step, mark the Precondition as Unachieved.

end-while

If any Precondition in possible-goals is still unmarked, mark it as Unachieved.

adds 4--- Add.List (new-step)

deletes _ Delete_List (new-step)

step _ new-step

/, All Adds in adds and Deletes in deletes are marked Active at this point. ,/

while (step _ Successor (step)) do

For each Unachieved Precondition in this step which matches with an Active Add in

adds, mark that Precondition as Achieved.

For each Achieved Precondition in this step which matches with an Active Delete in

deletes, mark that Precondition as Unachieved.

For each Active Add in adds which matches an Add or Delete for this step, mark

that Add as Inactive.

For each Active Delete in deletes which matches an Add or Delete for this step,

mark that Delete as Inactive.

end-whil_

Collect all Unachieved Preconditions in the plan and place them in unachieved.

end-of Update-Goal-Set

Figure 11: Update-Goal-Set Procedure
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;;; pre(8) = the precondition predicates of step s

;;; del(s) = the delete predicates of step s

;;; unachieved(c) = the predicate c is marked as unachieved

;;; P =< S,O >

;;; S = {sis is a step in plan P}

;;; O = {< sl, s2 > ]*x E S, s2 E S and sx ordered before s2}

;;; G = {< c, s > ]c E pre(s) and unachieved(c) }

Procedure UA (P,G)

IfG isempty, return SUCCESS

Choose c and s,_d such that < c,s,_,d>E G.

Let stoad,_be the lastdeleterof c in the plan P.

O P S,d,o_,a_ Get_Relevant_Operators(c)

while Not_Empty( O P S,d_o_ )do

Sold _ Make- Unique-Step( Pop( O P S,d_,a ))

Order s_Id before s,_,din P.

Order sodd after SZoot&z in P.

ordering.atack *-- NULL

< P,ordering..stack> _ Disambiguate(P, S_d, ordering_stack)

G *-- Update_GoaLSetfor_UA_Plan(s_, G)

If UA(P,G) = SUCCESS, then return SUCCESS

while Not..Empty(ordering..stack) do

< P,ordering..stack> _ Disambiguate.Backtrack(P, sodd, ordering_stack)

G ¢--- Opdate_Goal-Set(sadd, G)

If UA(P,G) = SUCCESS, then return SUCCESS
end-while

end-whi_

Return FAILURE

end-of UA

Figure 12: Implementation of the UA Planning Algorithm
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Procedure Disambiguate(P, S_da, ordering_stack)

Mark all steps in P that are before S_dd as BEFORE.

Mark all steps in P that are after Sada as AFTER.

Let parallel-steps be all steps in P which are neither before nor after S_dd.

while Not_Empty(parallel-steps) do

step <-- Pop(parallel-steps)

if step is not masked BEFORE or AFTER, and if Interact(step,s_dd),

then Order step after sadd in P

ordering_stack <-- Push(< step,AFTER> ,ordering_stack)

Mark all unmarked steps after step as AFTER

end-if

end-while

Return < P,ordering_stack>

end-of Disambiguate

Figure 13: Disambiguate Procedure used by UA

Procedure Disambiguate.Backtrack(P, s_d, ordering_stack)

while Not_Empty(ordering_stack) do

< step,ordering> _ Pop(ordering_stack)

if ordering = AFTER

then Undo ordering of step after Sadd in P

Order step before saaa in P

ordering_stack 4--- Push(< step,BEFORE>, ordering_stack)

Return Disambiguate(P, s_a, ordering_stack)

ehm Undo ordering of step before s_a in P

end-if

end-while

Return < P,NULL>

end-of Disambiguate lqaektrack

Figure 14: Disambiguate_Backtrack Procedure used by UA
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B Proofs

B.1 Definitions

• A plan is a pair < 0, -<>, where 0 is a set of steps, and -< is the "before" relation on 0,

i.e. -< is a strict partial order on 0. Notationally, 01 -< 02 if and only if (01,02) q-<.

A problem is solvable if there exists a plan that solves the problem. A planner is

complete iff the planner will produce a solution plan for every solvable problem.

Two plans, P1 =< 01,-<x> and P2 =< 02,-'<2> are said to be equivalent, denoted

/91 _- P2, if there exists a bijective function f from 01 to 02 such that:

- for all s E 01, s and f(s) are instances of the same operator, and

- for all O', O" E 81, O' -< O" if and only if f(O') -< f(O").

• A plan P2 is a 1-step eztension of a plan P1 with respect to TO (or UA) if P2 is equivilent

to some plan produced from P1 in one invocation of TO (or UA).

• PI is a subplan of P2 =< 82, -<2> denoted P1 C_ P2, if P1 -< 81, -<1> where

• P1 is a strict subplan of P2, denoted P1 C P2, if P1 C_ P2 and P1 has fewer steps than

/'2.

• P1 is a linearization o.fP2 =< 02, -<2> if P1 is totally ordered and P1 _-< 02, -<1> where

-<2C-<1.

• A solution plan P is a compact solution to a problem if no strict subplan of P solves

the problem.

• For a giva problem, we define the search tree treeto as the complete tree of plans that

are gencRted by the TO algorithm on that problem, tree_ is the corresponding search

tree genetsted by uA on the same problem.

• Given a search tree, let parent be a function from a plan to its parent plan in the tree.

P1 is the is the parent of P2, denoted P1 = parent(P2), only if P2 is a 1-step extension

of P1.

Given U E tree,,_ and T E treeto, T E £(U) if and only if plan T is a linearization

of plan U and either both U and T are root nodes of their respective search trees, or

parent(T) q £(parent(U)).
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B.2 Extension and Existence Lemmas

TO-Extension Lemma: Consider totally ordered plans To =< 00, 40> and 7'1 =< 00 U

{O_dd}, "<1>, such that "_0C_1. Let G be the set of false preconditions in To. Then T1 is a

one-step extension of To by TO if:

• c = select-goal(G), where c is the precondition of step O,_d in To, and

• O,,dd adds c, and

• O,,dd is ordered before O,_d in T1, and

• O_da is ordered after the last deleter of c in T1.

Proof Sketch: This lemma follows from the definition of TO. Given plan To, with false

precondition c, once TO selects c as the goal, TO will consider all operators that achieve c,

and for each operator TO considers all positions before e and after the last deleter of c.

UA-Extension Lemma: Consider a plan U0 =< 00, -%> produced by uA and plan U1 =<

01, -_1>, such that 01 = 0o U {O_Zd} and -_lD-_o. Let G be the set of false preconditions of

the steps in Uo. Then U1 is a one-step extension of Uo with respect to UA if:

• c = select-goal(G), where c is the precondition of step O,_d in U0, and

• O,,da adds c, and

• -_a is the minimal set of consistent orderings such that

- _oC-_1, and

- (0,_, O,_d) _-.q, and

- (Oa_t, 0_) E-_I, where Oa_l is the last deleter of e in U1, and

- (0 _, 0") E-_I if O' and 0" would interact if they were in parallel.

Proof Sket_a This lemma follows from the definition of UA. Given plan Uo, with false

precondition _ _A considers all operators that achieve c, and for each such operator UA then

inserts it in t]_ plan such that it is before c and after the last deleter, uA then considers

all consistent combinations of orderings between the new operator and the operators with

which it interacts. No other orderings are added to the plan.

Existence Lemma: Let P1 be a one-step extension of Po with respect to TO (or UA). If

plan P0 is a member of treeto (or tree_), then some child of P0 is equivalent to P1.

Proof Sketch: Since P1 is a one-step extension of Po, there must be a series of choices by

TO (or UA) in extending P0. A corresponding series of choices can be made in expanding P0,

and thus the resulting plan will be equivalent to P1.
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B.3 Proof of Search Space Correspondence E

Mapping Lemma: Let Uo =< 8o, -_,,o> be an unambiguous plan and let U1 =< 81, "%1>

be a 1-step extension of U'0 with respect to UA. If T1 =< 91, -_tl> is a linearization of U1

then there exists a plan To such that To is a linearization of Uo and T1 is a 1-step extension

of To with respect to TO.

Proof: By the definition of UA, 81 -- 8o t.J {O,dd}, where O,dd added some c that is a

precondition of some plan step Owed that is necessarily false in U0. Hence, To =< #o, _to>

is a linearization of Uo, where -_to= {(O_,Oj)](O_,Oj) E'_tl and O,,O_ _ O,_d}; that is, To

is the result of removing O,dd from T1. Using the TO-Extension lemma, we can show that

T1 is a 1-step extension of To. First, since Uo and To must have the same set of goals and

UA selected goal c in expanding Uo, TO will select c in extending To. Second, O,dd adds c.

Third, O_/d is before O,_ed in T1, since O_ is before O,_e_ in U1 (by definition of UA) and

T1 is a linearization of U1. Finally, O.,_ is after the last deleter of c, Od_, in T1, since O_d

is after Od_t in UI (by definition of trA) and T1 is a hnearization of Ui. Q.E.D.

Totality Property For every plan U in tree_,,, there exists a non-empty set {TI,..., T,,,}

of plans in treeto such that £(U) - {T1,..., T,,,}.

Proof: It suffices to show that if plan U1 -< 81,-_,1> exists at depth d in tree_a and

< 81, -'<tl> is a lineaxization of U1, then a plan T1 -< 8, "<tl> exists at depth d in treeto.

Base case: The statement trivially holds for depth 0.

Induction step: Under the hypothesis that the statement holds for depth n, we now prove

that the statement holds for depth n -t- I. Suppose that U1 --< 81,-_,,1> exists at depth

n + 1 in tree_ and < 81, -_tl> is a linearization of U1. Let Uo be the parent of U1; thus, U1

is a 1-step extension of Uo with respect to uA. By the Mapping lemma, there exists a plan

T0 such that To is a linearization of Uo and < 81, -_tl> is an extension of To with respect to

TO. By the induction hypothesis, To exists at depth n in treeto. Therefore, by the Existence

Lemma, a plan T1 _-< 81, _tl> exists at depth n + 1 in treeto. Q.E.D.

Disjointness Property: £ maps distinct plans in tree,a to disjoint sets of plans in treeto;

that is, if Ux, U= E tree,a and U1 _ U2, then £:(U1)f3/:(U2) = {}.

Proof." By tim definition of £, if T1, T2 E £(U), then T1 and T2 axe at the same tree depth d

in treeto; furtltermore, U is also at depth d in tree,.,. Hence, it suffices to prove that if plans

U1 and U2 ateat depth d in tree. and U1 # U2, then £(U1) N £(U2) - {}.

Base case: The statement vacuously holds for depth 0.

Induction s_ep: Under the hypothesis that the statement holds for plans at depth n, we

prove, by contradiction, that the statement holds for plans at depth n + 1. Suppose that

there exist two distinct plans, U2 =< 82, "¢1> and U2 =< #:, _$>, at depth n + 1 in tree_

such that T • £(U1)N £(U2). Then (by definition of £), parent(T) • £(parent(U_))

and parent(T) • f.(parent(U2)). Since parent(U1) _ parent(U2) contradicts the induction

hypothesis, suppose that U1 and U2 have the same parent Uo. Thus, U1 and U2 are distinct

1-step extensions, with respect to uA, of the same (parent) plan. There axe two cases to

consider: either (i) #1 _ #2 or (ii) #1 = 82 and -'<1_-_2. In the first case, since the two
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plans do not contain the same set of plan steps, they have disjoint linearizations, and hence,

L;(U1) N LI(U2) = {}, which contradicts the supposition. In the second case, 01 = 82; hence,

both plans resulted from adding plan step Oada to the parent plan. Since -<x#'<2, there exists

a plan step O_nt that interacts with Oadd such that in one plan Oi,,t is ordered before O_dd

and in the other plan Oodd is ordered before O_,a. Thus, in either case, the linearizations of

the two plans are disjoint, and hence, £(U1)NL;(U2) = {}, which contradicts the supposition.

Therefore, the statement holds for plans at depth n + 1. Q.E.D.

B.4 Completeness Proof for TO

We now prove that TO iscomplete under a breadth firstsearch control strategy.Given an

arbitrary solvable problem, there must exist a compact solution. (This follows from the

definitionof compactness.) Consequently, to prove that TO iscomplete under breadth-first

search,it sufficesto prove that a compact solution to the problem existsin treeto.Before

doing so,we firstprove the followinglemma.

Subplan Lemma: Let totally-ordered plan To be strict subplan of a compact solution To.

Then there exists a plan T1 such that T1 is a subplan of T, and is a 1-step extension of To

with respect TO.

Proof: Since To is a strict subplan of T, and To is a compact solution, the set of false

preconditions in To, G, must be non-empty. Let c = goal - select(G), let O,_ed be the

step in To with precondition c, and let Oaad be the step in To that achieves c. Consider the

totally ordered plan T1 =< 00 U (O_d), "<1>, where -<1C-<o. Clearly, T1 is a subplan of

T0. Furthermore, by the TO-Extension Lemma, T1 is a one-step extension of To by TO. To

see this, note that Oadd is ordered before O,_ed in T1, since it is ordered before O,_ed in To.

Similarly, O_dd is ordered after the last deleter of c in To, since any deleter of c in To is a

deleter of c in T,, and Oadd is ordered after the deleters of c in 2",. Thus, the conditions of

the TO-Extension Lemma hold. Q.E.D.

TO Completeness Theorem: If < 8°,-<o> is a totally-ordered compact solution, then

some plan T, _--< 8,, -<°> is a member of treeto.

Proof: It is straightforward to show that a plan with j steps can only exist at depth j - 2

in treeto. Let I1 be the cardinality of 8,. Then, if T° __< 8,, -<o> exists in treeto, it must be

depth k - 2. To prove out result, it suffices to show that that for all d _< k - 2, there exists

a plan at depth d that is a subplan of To. Note that any subplan of To at depth k - 2 must

be equivilent to Tin.

Base case: The root plan of tree,, (the empty plan) is a subplan of To.

Induction step: Assume that the statement holds for plans at depth n, where n < k - 2.

Then there exists a plan To at depth n that is a strict subplan of To. By the Subplan Lemma,

there exists a plan < 81, -<1> that is both a subplan of To and a 1-step extension of To with

respect to TO. By the Existence Lemma, T1 2< 81, -<1> is a child of To. Thus there exists

a subplan of T, at depth n + 1. Q.E.D.
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B.5 Completeness Proof for UA

We now prove that UA is complete under a breadth-first search strategy. The result follows

from the search spate correspondence defined by £ and the fact that TO is complete. In

particular, we show below that for every totally ordered plan T in treeto, there exists a

plan U in tree_ such that T is a lineaxization of U. Since UA produces only unambiguous

plans, it must be the case that if T is a solution, U is also a solution. From this, it follows

immediately that UA is complete.

Inverse Mapping Lemma: Let To =< O0,-_to> be a totally-ordered plan. Let T1 :<:

01,-_tl> be a 1-step extension of To with respect to TO. Let U0 -< 0o,-_o> be a plan

produced by uA such that To is a linearization of Uo. Then there exists a plan U1 such that

T1 is a linearization of U1 and U1 is a 1-step extension of U0 with respect to UA.

Proof: By the definition of TO, 01 ----O0 U {O_dd}, where O_d added some c that is a false

precondition of some plan step O,_¢d in U0. Consider U1 =< 01,-_,,1> where -_,,1 is the

minimal subset of -_tl such that:

• -_0C__1, and

• (O_dd,O,.,d) _'_, and

• (Od_l, O_dd) E-_I, where O&l is the last deleter of c in U1, and

• (O t, Otl) _'_1 if O' and O" would interact if they were in parallel.

Since -_,,1C_-_tl, T1 is a linearization of U1. In addition, U1 is an extension of U0, since it

meets the conditions of the UA-Extension Lemma, as follows. First, since c must have been

the goal selected by TO in extending To, c must likewise be selected by uA in extending U0.

Second, O_dd adds c, since O,dd achieves c in To. Finally, by construction, -_,,1 satisfies the

"minimality" part of the fourth condition of the UA-Extension Lemma. All of the orderings

required by the fourth condition exist in _¢1 by the definition of TO. Q.E.D.

UA Completeness Theorem: Let To be a totally-ordered compact solution. Then an

unambiguous plan Uo exists in tree_ such that T, is a linearization of Uo.

Proof: Since TO is complete, it suffices to show that if a plan T1 exists at depth d in treeto,

then a plan UI exists depth d in tree_ such that T1 is a linearization of U1.

Base case: The statement trivially holds for depth 0.

Induction s_ep: Under the hypothesis that the statement holds for depth n, we now prove

that the statement holds for depth n + 1. Assume T1 --< 01, _tl> exists at depth n + 1

in treeto and let To -< 0o, -_to> be the parent of T1. Thus, T1 is a 1-step extension of To

with respect to TO. By the induction hypothesis, there exists a plan U0 at depth n in tree_

such that To is a lineaxization of U0. By the Inverse Mapping Lemma, < 01,-_,,1> is both

a linearization of T1 and a one-step extension of Uo with respect to UA. Therefore, by the

Existence Lemma, there exists a plan U1 _-< 01, -%1> that is a child of U0 in tree_. Q.E.D.
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